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The existence of surface waves trapped above a submerged horizontal cylinder was 
shown by Ursell to depend upon the vanishing of a certain infinite determinant. Here, 
the determinant is evaluated numerically and the dispersion curves found. It is shown 
that the mild slope equation may be used to determine the dispersion relation and 
surface profiles with good accuracy and with less computational effort than the full 
linear theory. 

1. Introduction 
A limited number of explicit solutions are known for water waves trapped by the 

bottom topography in such a way that the amplitude of the motion decays to zero 
at  large distances. The first such edge wave was discovered by Stokes (1846) who 
showed that a wave may progress along a straight coastline with the motion decaying 
exponentially in the offshore direction in the case where the offshore bed profile is 
a plane beach of constant slope. This work was extended by Ursell(l952) who gave 
explicit solutions for a set of edge-wave modes on a plane beach of which the 
fundamental mode is that found by Stokes. The existence of a trapping mode above 
a submerged, horizontal, circular cylinder was first proved by Ursell (1951). On the 
basis of the full linearized theory of water waves, he showed that the existence of 
trapped waves depended upon the vanishing of a certain infinite determinant. He 
went on to show that zeros of the determinant exist if the radius of the cylinder was 
small compared to the length of the waves. This is not a physical restriction, as has 
been shown by Jones (1953), who proved that trapped waves exist for a number of 
geometries including a submerged cylinder of any radius and a rectangular shelf 
adjoining a region of greater depth. The full linear solution for the shelf has been 
determined semi-analytically by Evans & McIver (1984). 

Approximate solutions based upon shallow-water theory have been obtained for the 
plane beach by Eckhart (1951) and for the shelf by Snodgrass, Munk t Miller (1962). 
A fundamental difference between these shallow-water theories and the full linear 
theories is that the former allow the possibility of an infinite number of modes for 
any geometry, while the number of modes remains finite in the latter case. 

For the rectangular shelf, Evans & McIver (1984) used the full linearized theory 
to show that for a given shelf width the number of possible modes increases as the 
depth of the shelf decreases. Also, for a fixed shelf geometry a single mode exists in 
the limits of both low and high frequency with a maximum number at some 
intermediate frequency. In  the present work, the full linear solution given by Ursell 
(1951) for the submerged cylinder is computed without restriction upon the radius. 
Similar behaviour to the shelf geometry is found. For a fixed cylinder of radius a, 
it is found that a single mode exists for a depth of submergence of the cylinder greater 



244 P. McIver and D. V. Evans 

than about 1 .07~.  As the depth of submergence is decreased, further trapped modes 
appear. Again, for a fixed cylinder configuration the number of modes varies with 
frequency, these being just a single mode in the low- and high-frequency limits. 

The full linear theory derived by Ursell (1951) for the cylinder is not easily 
computed. However, here, simple lower bounds on the dispersion relation for the 
fundamental mode are found using a simple comparison theorem for edge waves that 
is proved in $3. Also, an approximate dispersion relation for all of the modes is 
calculated using the so-called ' mild-slope ' equation, based on the assumption that 
variations in the depth are small over a horizontal distance comparable to the 
wavelength. The equation has been used previously for computations of the plane 
sloping beach edge-wave modes of Ursell (1952). Thus, Smith & Sprinks (1975) 
showed that the dispersion relation may be determined very accurately using the 
mild-slope equation for all but the fundamental mode on the greatest beach slopes, 
while Kirby, Dalrymple & Liu (1981) used the equation to calculate the corresponding 
surface profiles, but did not make a comparison with the exact expressions given by 
Ursell(l952). To help validate the use of the mild-slope equation, such a comparison 
is made here and close agreement with the exact linear theory is found. For the 
trapped modes over the submerged cylinder, the mild-slope equation is again shown 
to compare favourably with the full linear theory when computing the dispersion 
relation. In addition, it was fuund that the surface profiles are reproduced reasonably 
well using the mild-slope equation with usually only small errors when compared with 
the full linear theory. 

Trapped waves of the type discussed in this paper have been observed by the second 
author during experimental testing of a device for absorbing energy from waves based 
on the oscillations of a horizontal submerged cylinder. At  certain frequencies the 
incident wavetrain would excite large-amplitude wave motions, confined to the 
immediate vicinity of the cylinder, which would persist after the wavemaker was 
switched off. No measurements were made of these motions. 

2. Formulation 
Cartesian axes are chosen so that y is directed vertically downwards and x and 

z are in the plane of the free surface. The depth contours are assumed to be parallel 
to the z-axis, so that the depth varies only in the x-direction. With the usual 
assumptions of the inviscid, linearized theory of water waves, the velocity potential 

a w  a 2 0  aw 
a x 2  ay2 a22 

@(x, y, z,  t )  satisfies 
-+-+- = 0 within the fluid, 

a w  a@ 
at2 ay 

the free surface condition 
-- - 9-9 y = 0, 

and = 0, 
a 0  - 
an 

on the solid boundaries, where n is measured normal to the boundary. 

travelling along the depth contours have the form 
Solutions of (2.1-2.3) corresponding to waves of frequency u and wavelength k 

@ ( x , T J , z , ~ )  = $ ( x , Y )  ~ ~ ~ ( k z - u a t ) .  (2.4) 
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within the fluid, and 
% + K $ = o  ony=O,  
aY 

where 

The condition (2.3) is also to be satisfied by $. For trapped-wave solutions the motion 
must decay at large distances, thus 

$,IV$I+O as ~ x ~ + o o .  (2.8) 

3. A comparison theorem for edge waves 
THEOREM. Let D, and D, be two semi-infinitejuid domains; the domain D, bounded 

by the free surface F and the curve C,;  the domain D, bounded by F and a second curve 
C, as i n h u r e  1. Let the curves C,  and C, cut F at the same point and extend to infinity 
in such a way that D, is contained entirely within D,. Suppose edge-wave solutions exist 
for each domain as defined by (2.5-2.8). Let c-rg be the frequency of the fundamental mode 
with wavenumber k for the domain D, ( i  = 1,2). Then 

i.7; d i.7;. (3-1) 

Proof: Suppose $$ is the potential of the fundamental edge-wave mode for the 
domain Dg (i = 1,2). Then by definition 

$, > 0 throughout D,, 

and -/a, w t  is bounded as x+oo ( i  = 1,2). 
ax 

From theorem 2 of Grimshaw (1974) 

(3.2) 

where the last inequality follows since D, c D, and the integrand is positive 
throughout D, ( i  = 1,2), and the last step follows from considering the energy of the 
fluid motion (Grimshaw (1974), equation (2.12)). The result (3.1) follows immediately. 

Similar results to (3.1) have previously been obtained for finite domains, see, for 
example, Courant t Hilbert (1953, chapter 6) where the results are obtained by the 
application of extremum principles. 

This simple comparison theorem may be used to obtain bounds on a dispersion 
relation using known edge-wave solutions. Consider a fixed, submerged, horizontal, 
circular cylinder in deep water. Let the radius of the cylinder be a and the axis be 
submerged to a depth f( > a), as shown in figure 2. The contour C,  is chosen to be 
the positive y-axis, except for I y - f  I < a, where it is the surface of the cylinder 

Firstly, consider C,  to be a plane beach at such an angle /3 to the horizontal as to 
touch, but not cut, the surface of the cylinder, as shown in figure 2 (a) .  The frequency 
u,, of the fundamental mode for edge waves on such a plane beach is given by 

y = ff(a2-x,)i, x > 0. 

i.7; = gk sin/3, (3.3) 
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FIGURE 1. Schematic drawing of bounding contours for comparison theorem. 

X 

FIGURE 2. Definition sketches for application of comparison theory to the circular cylinder: 
(a) comparison with plane beach; ( b )  comparison with rectangular shelf. 

so that, by (3.1), the fundamental mode of the same length trapped by the cylinder 
has a frequency u that satisfies 

u 2 > g k s i n / l = g k  1- - . ( CYY (3.4) 

A second bound may be found by considering C, to be a bounding rectangular shelf, 
as shown in figure 2 (b). For arbitrary depths, there is no explicit dispersion relation 
known for edge waves over a rectangular shelf. However, Evans & McIver (1984), 
following the analysis of Jones (1953), show that, for a shelf of width a and depth 
h,  the fundamental edge-wave mode of frequency crr and wavenumber k satisfies 

k < k‘, (3.5) 

u: = gk’ tanh k’h. (3.6) 

Hence from (3.5), (3.6) a: > gk tanh kh (3.7) 

and from (3.1) uz > gk tanh k ( f - a ) .  (3.8) 

where k’ is the solution of 

Thus two lower bounds for the dispersion relation have been found. As will be seen 
later, (3.4) is the closer bound for small u and (3.8) for large cr. No new useful upper 
bound for the frequency of the fundamental mode appears to be available from this 
theory. There is an upper bound on the frequency of trapped waves given by u2 < g k ;  
this condition arises from the requirement that the motions are exponentially 
decaying at large distances. 
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4. Method of solution 
Using full linear theory, Ursell (1951) examined the trapping of waves by a 

submerged, horizontal cylinder and showed that the dispersion relation may be 
determined by locating the zeros of a certain infinite determinant, given in the 
Appendix of the present paper. In general this is a non-trivial task, though Ursell 
was able to show that, for fixed kf, a trapping mode exists provided ka is sufficiently 
small. In particular, he was able to derive an explicit dispersion relation valid for 
small ka. 

In the present work, the problem is solved numerically for arbitrary ka.  A 
convenient recurrence relation for the evaluation of the matrix elements calculated 
by Ursell is given in the Appendix. The problem is completely specified by three 
non-dimensional parameters : kf, ka and the ratio of K to k .  Ursell denotes the latter 
by cosa because, for trapped waves, K is necessarily less than k.  Two of the 
parameters may be fixed and the third varied until a zero of the determinant is found. 
The greatest computational expense incurred while evaluating the matrix elements 
is in computing the integrals pmn(kf,  a), as defined by (A 3) of the Appendix. Thus, 
it might seem appropriate to keep kf and a fixed while ka is varied. However, the 
range of possible values of a is so restricted (see $3) that it was more convenient in 
practice to have this as the variable and to take kf and ka as the fixed parameters. 
This is equivalent to fixing the configuration (a cylinder of given radius in a channel 
of given width), and searching for the frequencies of the edge-wave modes. 

The solution procedure, then, was to fix kf and ka and systematically to vary a, 
looking for zeros of a suitably truncated determinant. Convergence checks were 
carried out as described for a similar problem by Evans t McIver (1984). The m, n 
element of the matrix is proportional to (a/ f  )m+n so that convergence was least good 
with the cylinder close to the surface. It turned out that Ka could be determined to 
three decimal places for f / a  = 1.1 by taking a 10 x 10 system, while for f / a  = 1.01 
up to a 40 x 40 system was sometimes required. Generally, higher frequencies required 
more terms than lower frequencies. 

An alternative method of solution is to make use of the ‘mild slope’ equation; 
derivations may be found in Berkoff (1972) and Smith t Sprinks (1975). The basic 
assumption in these derivations is that the bottom slope is small or that changes in 
depth are small over one wavelength. Despite this, the equation gives accurate results 
for the circular cylinder where this assumption is clearly violated. This is not 
particularly surprising as the depth varies most slowly in the shallowest region where 
the predominant edge-wave motion occurs. The great advantage of the mild-slope 
equation is that it is readily solved for both the dispersion relation and surface 
profiles. Calculation of the surface profile, in particular, is cumbersome using the full 
linear equations given by Ursell (1951). 

For edge waves of longshore wavenumber k and frequency 6, the mild-slope 
equation for the wave height g reduces to 

(see Smith t Sprinks (1975), $3), where 
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FIGURE 3. Comparison of Ursell's edge-wave modes for a plane beach of slope /3 (-) with the 
results obtained from the mild-slope equation ( x ) /3 = A x  (fourth mode); ( b )  /3 = ) x .  

and k is the real positive root of 

r2 = gk' tanh k'h. (4-4) 

Here h = h(x) is the local water depth, so that k' is the local wavenumber and is a 
function of x through (4.4). 

Equation (4.1) is of Sturm-Liouville type and standard library routines are 
available to solve for the eigenvalue k and for the corresponding eigenfunction. Smith 
& Sprinks (1975) calculated the dispersion relation for edge waves on a plane beach 
using (4.1). A comparison with the exact theory of Ursell (1952) gave graphically 
indistinguishable results for slopes of up to tanp  - 1. Kirby, Dalrymple & Liu (1981) 
calculated the surface profiles of plane beach edge waves but did not present a 
comparison with the exact formula derived by Uwell(l952). This comparison is made 
in figure 3 for beach angles of A n  and in. For /3 = &n there are four modes; the 
first three eigenfunctions calculated from the mild-slope equation are indistinguish- 
able from the exact formula although some discrepancy does arise in the fourth mode 
as shown in figure 3 (a). For the single mode at p = in, ci2/gk is determined to within 
3 yo by the mild-slope equation and a comparison of the surface profiles (figure 3b) 
still shows good agreement. These results give confidence in the use of the mild-slope 
equation even when the bed slope is large. 

For calculations of the trapping modes for the submerged cylinder using the 
mild-slope equation, it is convenient to substitute 

x = ax, g =  a Y ,  p = u2a2r 

A( ry + ((k'a)2- (ka)2)  r Y = 0. 
dX dX 

into (4.1) to obtain 
(4.5) 
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FIGUFLE 4. Comparison of the dispersion curves for the circular cylinder as computed by the 
full linear theory (-) and the mild-slope equation (- - -) for submergence: (a) f / a  = 1.05; 
( b ) f / a  = 1.01. 

Only symmetric trapping modes will be sought so that the boundary condition at 
X = 0 is just 

(4.0) 
dY _-  dx - 0. 

A boundary condition at X = 1 may be derived by matching the solution with the 
exponentially decaying solution of (4.5) for deep water (k’ = K). This results in 

Alternatively, a semi-infinite condition may be imposed by taking Y to be zero at 
a suitably large value of X. The NAG library routines DQ2KDF and DQ2KEF 
respectively were used to solve for the eigenvalues and eigenfunctions. The 
eigenvalue routine DQ2KDF gives accurate results for both the finite and semi-infinite 
domains but is most efficient is used with the boundary condition appropriate to the 
finite domain. For the eigenfunction calculation using DQ2KEF the semi-infinite 
condition was used exclusively as in many cases there is a significant deviation from 
the zero level at the cylinder edge. Care must be taken to extend the domain 
sufficiently far from the cylinder for the surface to go to zero in an unconstrained 
way. If appropriate library routines are not available then the reader is referred to 
the method of Kirby et al. (1981). 

A comparison of the results obtained for the dispersion relation from the exact 
theory and the mild-slope equation is made in figure 4. For f l u  2 1.1 the results are 
indistinguishable ; for valuesf/a close to unity a small discrepancy becomes apparent 
at low frequencies. For shorter waves the curves once more become indistinguishable 
until ku - 10. It was not possible to compute the exact theory beyond this because 
of overflow during the calculations. Hence, for ka 3 10 calculations were made using 
the mild-slope equation only. 

5. Results and discussion 
By considering ku to be small, Ursell(l951) proved that a trapping mode may exist 

in the presence of a submerged horizontal cylinder. Jones (1953) proved the existence 
of trapped waves in a wide claas of problems, including a cylinder of arbitrary radius. 
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FIGURE 5. (a) The dispersion relation of the fundamental mode for flu = 1.05, 1.1, 1.2 and 1.5. 
( b )  Comparison between the full linear theory (-) and the approximate dispersion relation due 
to Ursell (- x - x -). 

Computations based on the exact linear theory show that there is just a single mode 
for any wavelength whenever f / a  2 1.07. As f / a  is reduced below this value a second 
mode appears at  certain wavelengths, followed by further modes as f lu  approaches 
unity. It seems likely that the number of possible modes increases without bound 
as the top of the cylinder approaches the surface. 

In figure 5(u) the dispersion relations of the fundamental mode are plotted for a 
range of values of the submergencef/u. The existence of trapped waves requires K < k 
(Ursell (1951)) so that K = k (the dashed line in figure 5a)  is an upper bound for the 
dispersion relation. This line is also the dispersion relation for plane progressive waves 
in deep water travelling in the z-direction in the absence of the cylinder. It is apparent 
from figure 5 ( a )  that the presence of a cylinder has little influence, in the sense of 
producing a significant deviation from the deep-water dispersion relation, unless it 
is placed quite close to the surface. The shapes of the dispersion curves bear a strong 
resemblance to those calculated by Evans & McIver (1984) for waves trapped by a 
rectangular shelf. A fundamental difference is in the behaviour for long waves. For 
a rectangular shelf of depth h, K - kah for long waves and the depth of the shelf is 
important in determining the wave properties. For the cylinder, K - k for long waves 
and so the influence of the geometry becomes negligible. 

Ursell(l951, 95) derived an explicit dispersion relation for the fundamental mode 
for waves trapped by a cylinder by assuming that both ka and a were small. A 
comparison is made between this explicit relation and the exact theory in figure 5 (b). 
Forflu = 1.5 the exact relation deviates little from the line K = k ,  where a is small, 
and so there is good agreement with Ursell’s result. This is in contrast t o f / a  = 1.1 
where there is a marked discrepancy as ku increases beyond about 0.5. 

Two cases where there are higher modes are presented in figures 6 and 7. The dashed 
lines below the dispersion curves are the bounds derived in 9 3. Forflu = 1.05 a second 
mode exists for 2.3 < ka < 20. That their must be a high-frequency cut-off for the 
higher modes is evident from the following argument. As ka becomes very large the 
fluid motion does not penetrate to the depth of the cylinder surface, so the waves 
are unaffected by the presence of the cylinder; There can therefore be no variation 
in the 2-direction and the motion degenerates into a deep-water plane wavetrain 
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FIQWRE 6. The dispersion relation for a cylinder submerged to a depth of f / a  = 1.05; (-), 
dispersion curves; and (-----), bounds derived in $3: (i) K = k ;  (ii) K = k(l-(a/f)a)f; (iii) 
K = k tanhk(f-a). 
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FIGURE 7. The dispersion relation for a cylinder submerged to a depth f/a = 1.01; (-), 
dispersion curves; and (-----), bounds derived in $3: (i) K = k ,  (ii) K = k ( l - ( a / f 2 ) ~ ,  (iii) 
K = k tanhk(f-a). 

progressing in the direction of the cylinder axis, for which there is a unique dispersion 
relation. For flu = 1.01 there are at least four modes, the fourth mode appearing at 
ka - 35. Comparison with the results for f / a  = 1.05 in figure 5 shows a marked 
'fanning out' of the curves reflecting the increased influence of the presence of the 
cylinder on the higher-frequency waves. Also, the higher modes occur at lower 
frequencies for the smaller depth of submergence. 

Two sample sets of surface profiles are presented in figure 8 and 9. The number of 
crossings of Y = 0 may be used to identify each mode. The fundamental mode has 

9 FLM 151 



252 P. McIver and D.  V .  Evans 

1 .o 

0.5 

0 

-0.5 

0 1 2 3 4 
X 

FIGURE 8. The surface profiles of the trapping modes for a cylinder submerged to a depth f / a  = 1.05 
at frequencies given by (a) Ka = 1.05; (a) Ka = 3 ;  ( c )  Ka = 5 :  (-), full linear theory; and 
(- - - - -), the mild-slope equation. 

no zero crossings, the second mode one zero crossing, and so on. The profiles were 
calculated using both the full linear theory given by Ursell(l951) and the mild-slope 
equation. In  figure 8 ( f / a  = 1.05) the results for the fundamental mode at the 
frequencies corresponding to Ka = 3 and 5 are graphically indistinguishable using the 
two methods. Some of the profiles in figure 9 ( f / a  = 1.01) are calculated from the 
mild-slope equation only, as it was not possible to take sufficient terms in the full 
linear theory to obtain satisfactory convergence. The convergence of the full theory 
is very poor as f / a  approaches unity. However, the agreement between the full theory 
and the mild-slope equation improves with increasing frequency in all the cases 
calculated where comparisons were possible, as in figure 8. Hence the profiles 
mentioned above, shown in figure 9, are thought to be accurate. 

There are two likely sources of error arising from the use of the mild-slope equation 
in the present problem. First, no account is taken of any motion directly beneath the 
cylinder and, secondly, the edges of the cylinder clearly violate the mild-slope 
criterion. The importance of these sources of error will depend upon the frequency 
of the motion and the submergence of the cylinder, both effects being reduced when 
the submergence is increased. Consider a fixed submergence. At low frequencies when 
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FIGURE 9. The surface proflea of the trapping modes for a cylinder submerged to a depthf/a = 1.01 
at frequencies given by (a) Ku = 0.5, (b)  Ku = 2, (c) Ku = 5. (-), full linear theory; and (- - - -), 
the mild-slope equation. 

the motion penetrates to greater depths both effects may be significant. Thus there 
are discrepancies in the calculations for the fundamental mode in (a) of each of 
figures 8 and 9 and also in the dispersion relations presented in figure 4. At  higher 
frequencies, the large slope at the edge of the cylinder may give rise to errors where 
a significant motion extends over the cylinder edge. Even in the worst caaes the 
mild-slope equation reproduces the main features of the profile well; for most 
parameters the motion is chiefly confined to the vicinity of the cylinder and so 
agreement is very good. It is only where a mode has just appeared (as Ka increases) 
that these are significant motions at large distances from the cylinder. For example, 
in figure 9, Ka = 5,  the third mode has only just appeared as can be seen from the 
dispersion relation in figure 7 .  As Ka increases the area between each mode profile 
and the zero level is reduced. Note that the errors in the dispersion relations calculated 
by the two methods do not account completely for the difference in the profiles. 
Corresponding changes in the parameters produce relatively small changes in the 
mode shapes. 

For a fixed frequency, increasing the depth of submergence of the cylinder spreads 
the mode shape. For instance, compare the fundamental mode profiles in (a)  of each 

9-2 
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FIQURE 10. The surface profiles of the trapping modes for cylinder submergences 
f / a  = 1.05, 1.2, 1.5 at a frequency given by Ka = 2. 

of figures 8 and 9, or the second mode profiles in (c) of those figures. As the sub- 
mergence increases beyond f / a  - 1.07 only the fundamental mode exists. Figure 2 
shows the effect of increasing submergence on the surface profile of the fundamental 
mode when the frequency is held fixed. In the limiting case of infinite submergence 
the cylinder does not affect the motion and there is a plane wavetrain travelling in 
the direction of the axis of the cylinder. 

Appendix 

correspond to zeros of the infinite determinant 
Ursell(l951) shows that the trapping modes for the submerged horizontal cylinder 

where 

Here, In and K ,  are modified Bessel functions, a is defined by 

and v2 = gk cosa, (A 2) 
cosh p + cos a 
cosh ,u - cos a Bnm = em( - l )m+n coshnp cosh m p  exp ( - 2kf coshp) x 5," 

where 
(A 3) 

c0 = 1, E ,  = 2 (m 3 1). 

cosh p + cos a 
cash - cos 01 

where J p  = Joa coshpp exp ( -2kf coshp) 



Surface waves above a cylinder 

By combining Jp+, and JPp1 it follows that 

Jp+, = 2 cos a(Kp + J p )  - Jp-l + Kp+, + Kp-l ,  

where K ,  is again the modified Bessel function. 
Now, for large p, J p  - K p  and 

Therefore it is numerically convenient to define a scaled integral 

Ja = Jp/(%)’ 

255 

(A 4) 

and use the corresponding modification of (A4)  to calculate the integrals. The 
recurrence is begun by numerical integration. Similar scalings were employed when 
calculating the modified Bessel functions in (A 1). 
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